Это все про многочлены, детка.

Акции

prime numbers
(Рисунок: © Shutterstock В)

Математики обнаружили новое доказательство для одного из самых знаменитых недоказанных идей в области математики, известной как премьер-две гипотезы. Но маршрут они взяли, чтобы найти, что доказательства, возможно, не поможет доказать сам премьер-две гипотезы.

Премьер-близнец догадки все о том, как и когда простые числа — числа которые делятся только на себя и 1 — появляются на линии. «Простые Близнецы» являются простыми, которые в двух шагах друг от друга линии: 3 и 5, 5 и 7, 29 и 31, 137 и 139, и так далее. Премьер-близнец гипотеза гласит, что существует бесконечно много простых чисел-близнецов, и что вы будете держать встречая их независимо от того, как далеко вниз по линии вы идете. Он также утверждает, что существует бесконечно большое количество таких пар с каждым другие возможные зазоры между ними (премьер-пары, которые четырех шагах друг от друга, в восьми шагах друг от друга, 200,000 шагах друг от друга, и т. д.). Математики уверены, что это правда. Он уверен, кажется, это правда. И если это не было правдой, это означало бы, что простые числа не являются случайными, так как все думали, что бы испортить много идей о том, как цифры в целом. Но никто не смог это доказать.

По теме: математики краю ближе к решению ‘миллион долларов’ математические проблемы

Они могут быть ближе, чем когда-либо раньше. В документе, опубликованном августа. 12 в препринте журнале arXiv, как кванты сначала сообщалось, двух математиков доказали, что две премьер-гипотеза верна — по крайней мере в какой-то альтернативной вселенной.

Это то, что математики делать: работать над большими доказательства, доказывая, небольшие идеи. Иногда, уроки, извлеченные из этих небольших доказательств может помочь с большей доказательство.

В данном случае, математиками будут Саввин из Колумбийского университета и Марк Шустерман из Университета Висконсина доказали версия Twin премьер-домысливать за альтернативной вселенной «конечные поля»: количество систем, которые не уходят на бесконечность, как номер строки, но вместо петли обратно на себя.

Вы, наверное, сталкиваетесь каждый день конечным полем на лице часы. Он идет 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, и затем петли обратно к 1. В том, что конечное поле, 3+3 по-прежнему равна 6. Но 3+11=2.

Конечных полей многочленов, или такие выражения, как «4х» или «3x+17х^2-4,» Саввиной рассказал Живой науки, так же, как обычные цифры. Математиков, сказал он, узнали, что полиномы над конечными полями ведут себя как числа — целые числа на числовой прямой. Высказывания, которые являются истинными о целых числах, как правило, также доверия о полиномов над конечными полями, и наоборот. И так же, как простые числа идут парами, полиномы приходят в парах. Например, Близнецы 3х+17х^2-4 не 3х+17х^2-2 и 3X+17х^2-6. И хорошая вещь о полиномов, сказал Саввин, заключается в том, что в отличие от целых чисел, если наложить их на график они составляют геометрические фигуры. Например, 2х+1 дает график, который выглядит так:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *